
Sorting Algorithms II
Quicksort and Mergesort are efficient algorithms with O(n log n) time complexity

Lecture: Sorting Algorithms II
Lab 13: Quicksort, Mergesort

Welcome to the lecture dedicated to studying two fundamental sorting algorithms that form the basis of efficient data processing in modern
programming.

Learning Objectives

Understanding
Principles

Explore the
fundamentals of
QuickSort and
MergeSort algorithms,
based on the "divide
and conquer" strategy

Practical
Implementation

Learn to implement
efficient sorting
algorithms in C++

Complexity
Analysis

Understand the time
and space complexity
of O(n log n) algorithms

Motivation for Learning

Problem with Simple Algorithms

Simple sorting algorithms (Bubble Sort, Selection Sort, Insertion Sort)
have quadratic complexity O(n²), which makes them inefficient for
processing large volumes of data.

Bubble Sort 4 O(n²)

Selection Sort 4 O(n²)

Insertion Sort 4 O(n²)

Solution: O(n log n) Algorithms

QuickSort and MergeSort use the "divide and conquer" principle to
achieve significantly better performance on large data arrays.

QuickSort
Quick Sort

Quick Sort is one of the most efficient and widely used sorting algorithms, based on
the "divide and conquer" strategy.

How QuickSort Works
01

Choosing a Pivot Element

Select an element from the array as the pivot.
This can be the first, last, a random element, or
the median.

02

Partitioning the Array

Rearrange the array so that elements smaller
than the pivot are to its left, and larger elements
are to its right.

03

Recursive Sorting

Recursively apply the algorithm to the left and
right sub-arrays until fully sorted.

Real-world analogy: Imagine seating people at a table 4 those under 30 sit on the left, those over 30 sit on the right. Then repeat the process
for each group.

QuickSort Example
Original array: [5, 3, 7, 2, 6]

1 Choose pivot = 5

Take the last element as the pivot

2 Partitioning

Left: [3, 2] < 5, Right: [7, 6] > 5

3 Recursive sorting

Sort [3, 2] ³ [2, 3] and [7, 6] ³ [6, 7]

4 Result

[2, 3] + [5] + [6, 7] = [2, 3, 5, 6, 7]

QuickSort Implementation in C++

int partition(int arr[], int low, int high) {
 int pivot = arr[high]; // �O5<D49@ CBE?98A<= Q?9@9AF >4> pivot
 int i = low - 1; // �A89>E @9APH97B Q?9@9AF4

 for (int j = low; j < high; j++) {
 if (arr[j] <= pivot) {
 i++;
 swap(arr[i], arr[j]);
 }
 }
 swap(arr[i + 1], arr[high]);
 return i + 1;
}

void quickSort(int arr[], int low, int high) {
 if (low < high) {
 int pi = partition(arr, low, high);

 quickSort(arr, low, pi - 1); // %BDF<DG9@ ?96GR G4EFP
 quickSort(arr, pi + 1, high); // %BDF<DG9@ CD46GR G4EFP
 }
}

Important: The partition function performs the main task of partitioning the array relative to the pivot element.

QuickSort Complexity

O(n log n)

Average Case

With random pivot selection and even
partitioning

O(n²)

Worst Case

When the array is already sorted and pivot is
chosen poorly

O(log n)

Memory

Recursion depth averages log n

QuickSort demonstrates excellent performance in the average case, but it's important to consider the possibility of degradation to quadratic
complexity in the worst case.

QuickSort Optimizations

Pivot Selection

Random element

Median of three elements

First or last element

Hybridization

Switching to Insertion Sort for small
subarrays (usually < 10 elements) to
improve efficiency

Practical Application

Used in standard libraries: std::sort in C++,
Arrays.sort() in Java

MergeSort
Merge Sort

Merge Sort is a stable sorting algorithm that guarantees a time complexity of O(n log
n) in all cases.

How MergeSort Works

Divide

Divide the array into two equal halves until
arrays of a single element are obtained

Sort

Recursively sort each half of the array,
applying the same algorithm

Merge

Combine the sorted parts into a single
ordered array

Real-life analogy: Merging two already sorted stacks of playing cards into one ordered stack.

MergeSort Example
Initial array: [5, 2, 4, 1]

1
Divide

[5, 2, 4, 1] ³ [5, 2] and [4, 1]

2
Further Division

[5, 2] ³ [5], [2]; [4, 1] ³ [4], [1]

3
Merge Pairs

[5], [2] ³ [2, 5]; [4], [1] ³ [1, 4]

4
Final Merge

[2, 5] + [1, 4] ³ [1, 2, 4, 5]

MergeSort Implementation in C++

void merge(int arr[], int l, int m, int r) {
 int n1 = m - l + 1;
 int n2 = r - m;
 vector L(n1), R(n2);

 // Copy data to temporary arrays
 for (int i = 0; i < n1; i++) L[i] = arr[l + i];
 for (int j = 0; j < n2; j++) R[j] = arr[m + 1 + j];

 // Merge the temporary arrays back into arr[l..r]
 int i = 0, j = 0, k = l;
 while (i < n1 && j < n2) {
 if (L[i] <= R[j]) arr[k++] = L[i++];
 else arr[k++] = R[j++];
 }

 // Copy the remaining elements
 while (i < n1) arr[k++] = L[i++];
 while (j < n2) arr[k++] = R[j++];
}

void mergeSort(int arr[], int l, int r) {
 if (l < r) {
 int m = l + (r - l) / 2;
 mergeSort(arr, l, m);
 mergeSort(arr, m + 1, r);
 merge(arr, l, m, r);
 }
}

MergeSort Complexity

O(n lo&
Time Complexity

Guaranteed in all cases:
best, average, and worst

O(n)
Space Complexity

Requires additional
memory for temporary

arrays

100%
Stability

Preserves the relative
order of equal elements

MergeSort is characterized by predictable performance and stability, making it an ideal
choice for mission-critical applications.

Comparison of QuickSort and MergeSort

Algorithm Average Complexity Worst Case Memory Stability

QuickSort O(n log n) O(n²) O(log n) No

MergeSort O(n log n) O(n log n) O(n) Yes

The choice between algorithms depends on specific requirements: QuickSort is faster in practice, while MergeSort is more predictable and stable.

Practical Applications

QuickSort

Standard libraries (std::sort)

Real-time systems

Embedded systems with limited memory

General purpose sorting

MergeSort

External sorting of large files

Stable sorting of critical data

Parallel computing

Linked lists

External Sorting: When working with data that does not fit into RAM, MergeSort performs particularly well due to sequential data access.

Conclusion and Questions for Reflection

Key Takeaways

Both algorithms are significantly more efficient than simple quadratic methods

QuickSort is fast in practice, but can degrade

MergeSort is stable and predictable

Often used in combination with other algorithms

Discussion Questions:

1 What is the fundamental
difference in the approaches of
QuickSort and MergeSort?

2 Why is QuickSort often faster
than MergeSort, even though
they have the same average
complexity?

3 In what situations does
MergeSort outperform
QuickSort?

