Sorting Algorithms i

Quicksort and Mergesort are efficient algorithms with O(n log n) time complexity

Lecture: Sorting Algorithms I

Lab 13: Quicksort, Mergesort

Welcome to the lecture dedicated to studying two fundamental sorting algorithms that form the basis of efficient data processing in modern

programming.

PROGRAMMING
EDUCATION GOALS -

Learning Objectives

Understanding
Principles

Explore the
fundamentals of
QuickSort and
MergeSort algorithms,
based on the "divide
and conquer" strategy

Practical
Implementation
Learn to implement

efficient sorting
algorithms in C++

Complexity
Analysis
Understand the time

and space complexity
of O(n log n) algorithms

Motivation for Learning

Problem with Simple Algorithms Solution: O(n log n) Algorithms
Simple sorting algorithms (Bubble Sort, Selection Sort, Insertion Sort) QuickSort and MergeSort use the "divide and conquer" principle to
have quadratic complexity O(n?), which makes them inefficient for achieve significantly better performance on large data arrays.

processing large volumes of data.

e Bubble Sort — O(n?)
e Selection Sort — O(n?)
e Insertion Sort — O(n?)

f.-, oriithm complexity’

uickSort

Quick Sort

Quick Sort is one of the most efficient and widely used sorting algorithms, based on

the "divide and conquer" strategy.

B

il=]=1-1s]ala]-]= 18- BCoearasas:
i'agcacas a = N =] - S - [- [
il=]a)=1ala]=]=]1=0=0= F[=)=]s]=]s]-]1s]=]1=]

EEECEEEEEED
CEEEFECED

@ == [=]=]2]1=]=18]>]
88 8 &

ECECECECE
ae

How QuickSort Works

o1 (0)2 03
Choosing a Pivot Element Partitioning the Array Recursive Sorting
Select an element from the array as the pivot. Rearrange the array so that elements smaller Recursively apply the algorithm to the left and

This can be the first, last, a random element, or than the pivot are to its left, and larger elements right sub-arrays until fully sorted.
the median. are to its right.

Real-world analogy: Imagine seating people at a table — those under 30 sit on the left, those over 30 sit on the right. Then repeat the process
for each group.

QuickSort Example
Original array: [5, 3, 7, 2, 6]

| Choose pivot=5

Take the last element as the pivot

2 Partitioning
Left: [3, 2] < 5, Right: [7,6]1> 5

3 Recursive sorting
Sort [3,2]>[2,3]and [7,6] > [6, 7]

4 Result
[2,3]+[5]+[6,71=[2,3,5,6,7]

[>
=
5
5
-
i

QuickSort Implementation in C++

int partition(int arr[], int low, int high) {
int pivot = arr[high]; // Beilbupaem nocnefHnii snemMeHT Kak pivot
inti=low-1; // NHAEeKC MeHbLUero afieMeHTa

for (int j = low; j < high; j++) {
if (arr[j] <= pivot) {

i++
swap(arrli], arr[jl);
}
}
swap(arr[i + 1], arr[high]);
returni+1;

}

void quickSort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);

quickSort(arr, low, pi-1); // CopTupyem neByro 4acTb
quickSort(arr, pi + 1, high); // CopTupyem npaByto 4YacTb
}
}

[J Important: The partition function performs the main task of partitioning the array relative to the pivot element.

QuickSort Complexity

O(n log n) O(n?) O(log n)

Average Case Worst Case Memory
With random pivot selection and even When the array is already sorted and pivot is Recursion depth averages log n
partitioning chosen poorly

QuickSort demonstrates excellent performance in the average case, but it's important to consider the possibility of degradation to quadratic
complexity in the worst case.

QuickSort Optimizations

X4

Pivot Selection

Random element
Median of three elements

First or last element

Hybridization

Switching to Insertion Sort for small

subarrays (usually < 10 elements) to
improve efficiency

Practical Application

Used in standard libraries: std::sort in C++,
Arrays.sort() in Java

MergeSort

Merge Sort

Merge Sort is a stable sorting algorithm that guarantees a time complexity of O(n log
n) in all cases.

How MergeSort Works

»
AN
<
o
o Merge
. Sort Combine the sorted parts into a single
Divide Recursively sort each half of the array, ordered array
Divide the array into two equal halves until applying the same algorithm

arrays of a single element are obtained

Real-life analogy: Merging two already sorted stacks of playing cards into one ordered stack.

MergeSort Example

Initial array: [5, 2, 4, 1]

Divide

1 [5,2,4,1] > [5, 2] and [4, 1]

5 Further Division
[5, 2] > [5], [2]; [4, 11 > [4], [1]
Merge Pairs

3 [5],[2] > [2, 51; [4], [11 > [1, 4]
Final Merge

4

[2,5]+[1,4]>[1, 2, 4,5]

MergeSort Implementation in C++

void merge(int arr[], int |, int m, int r) {
intnl=m-1+1;

intn2=r-m;

vector L(n1), R(n2);

// Copy data to temporary arrays
for (inti=0;i<n1;i++) L[i]=arr[l +i];
for (intj=0; j < n2; j++) R[j1 = arr[m + 1 +j];

// Merge the temporary arrays back into arrfl..r]
inti=0,j=0,k=1;

while (i< n1 &&j<n2){

if (L[] <= R{]) arr[k++] = L[i++];

else arr[k++] = R[j++];

}

// Copy the remaining elements
while (i < n1) arr[k++] = L[i++];
while (j < n2) arr[k++] = R[j++];

}

void mergeSort(int arr[], int |, int r) {
if (1<r){

intm=1+(r-1)/2;

mergeSort(arr, |, m);
mergeSort(arr, m+ 1, r);
merge(arr, |, m, r);

}

}

MergeSort Complexity
O(nlo.. O(n) [0]0)78

Time Complexity Space Complexity Stability
Guaranteed in all cases: Requires additional Preserves the relative
best, average, and worst memory for temporary order of equal elements

arrays

MergeSort is characterized by predictable performance and stability, making it an ideal
choice for mission-critical applications.

Merge Sort

Comparison of QuickSort and MergeSort

Algorithm Average Complexity Worst Case Memory Stability
QuickSort O(n log n) O(n?) O(log n) No
O(n log n) O(n log n) O(n) Yes

The choice between algorithms depends on specific requirements: QuickSort is faster in practice, while MergeSort is more predictable and stable.

Practical Applications

QuickSort

e Standard libraries (std::sort)

Real-time systems

Embedded systems with limited memory

General purpose sorting

Quicksort

e External sorting of large files
e Stable sorting of critical data
e Parallel computing

e Linked lists

e

&

S
i ‘.I/
:E:::
Ay Ny
N\ N
e \y
‘~ ~ . i‘ \
N B -
Wy i.i'hﬁi\/
3 (g Y Ay
HHEAE
N

[J External Sorting: When working with data that does not fit into RAM, MergeSort performs particularly well due to sequential data access.

Conclusion and Questions for Reflection

Key Takeaways

e Both algorithms are significantly more efficient than simple quadratic methods

e QuickSort is fast in practice, but can degrade
¢ MergeSort is stable and predictable
e (Often used in combination with other algorithms

Discussion Questions:

1 Whatis the fundamental 2
difference in the approaches of
QuickSort and MergeSort?

Why is QuickSort often faster
than MergeSort, even though
they have the same average
complexity?

3

In what situations does
MergeSort outperform
QuickSort?

